19 research outputs found

    A novel Wide-Area control strategy for damping of critical frequency oscillations via modulation of active power injections

    Get PDF
    Cette thèse propose une nouvelle stratégie d'amortissement des oscillations de fréquence critiques par la modulation de l'injection rapide de puissances actives, qui ouvre la voie à l'utilisation d'actionneurs géographiquement dispersés, par exemple des ressources énergétiques distribuées (DERs), dans le contrôle des basses fréquences dynamique de l'angle du rotor du réseau électrique, qui comprend les oscillations interzones et les oscillations de fréquence transitoire. La méthode proposée intègre ces deux dynamiques différentes dans un cadre basé sur un système linéaire invariant dans le temps, dans lequel le contrôle de l'oscillation de fréquence transitoire est traduit en contrôle de la dynamique de mode commun du système. A cet effet, un examen attentif de la relation entre la variation transitoire de fréquence et la dynamique du mode commun est effectué; Les simulations montrent que le mode commun définit la forme d'un changement transitoire de faible signal de fréquence. La méthode de contrôle proposée vise à utiliser efficacement la réserve de marche limitée des DERs existants pour atténuer ces oscillations. Ceci est réalisé en découplant les actions de commande d'amortissement à différents endroits en utilisant les signaux d'oscillation du mode concerné comme commandes de puissance. Une base théorique pour cette commande de modulation découplée est fournie. Techniquement, les signaux d'oscillation modale souhaités sont filtrés en combinant linéairement les fréquences de l'ensemble du système, ce qui est déterminé par la technique (LQRSP). Avec la stratégie proposée, la modulation de chaque injection de puissance active peut être conçue efficacement en tenant compte de la limite de réponse et de la capacité de sortie en régime permanent du dispositif de support. Dans le cadre proposé, le signal de commande pour la commande de fréquence primaire est automatiquement déterminé dans une direction de commande (presque) optimale; des expériences montrent que ce signal a tendance à être la vitesse du système vue par le point d'injection de puissance. La commande modulante découplée a tendance à isoler les actions de commande pour les oscillations interzones et les oscillations de fréquence transitoire, ce qui atténue grandement les préoccupations concernant l'interaction entre la commande de ces deux types de dynamiquesThis dissertation provides a novel wide-area control strategy for damping of critical frequency oscillations via modulation of fast active power injections, which paves the way for the utilization of large-scale geographically dispersed actuators, e.g., distributed energy resources (DERs), in the control of power system low-frequency rotor angle dynamics, this includes the inter-area oscillations and the transient frequency swing. The proposed method incorporates these two different dynamics into a linear time invariant (LTI) system based control framework, in which the control of the transient frequency swing is translated into the control of the system common mode dynamics. For this purpose, a careful examination of the relationship between the transient frequency swing and the common mode dynamics is carried out; extensive simulations show that the common mode defines the shape of a small-signal transient frequency swing. The proposed control method pursues an efficient utilization of the limited power reserve of existing DERs to mitigate these oscillations. This is accomplished by decoupling the damping control actions at different sites using the oscillation signals of the concerned mode as the power commands. A theoretical basis for this decoupled modulating control is provided. Technically, the desired sole modal oscillation signals are filtered out by linearly combining the system-wide frequencies, which is determined by the linear quadratic regulator based sparsity-promoting (LQRSP) technique. With the proposed strategy, the modulation of each active power injection can be effectively engineered considering the response limit and steady-state output capability of the supporting device. In the proposed control framework, the power command signal for the primary frequency control is determined in a (near) optimal control sense; experiments show that this signal tends to be the system speed seen by the power injection point. Importantly, the decoupled modulating control tends to isolate the control actions for the inter-area oscillations and the transient frequency swing, thereby greatly relieving the concern about the interaction between the control of these two types of dynamics

    Complete Sequence of a F33:A-:B- Conjugative Plasmid Carrying the oqxAB, fosA3, and blaCTX-M-55 Elements from a Foodborne Escherichia coli Strain

    Get PDF
    This study reports the complete sequence of pE80, a conjugative IncFII plasmid recovered from an Escherichia coli strain isolated from chicken meat. This plasmid harbors multiple resistance determinants including oqxAB, fosA3, blaCTX-M-55, and blaTEM-1, and is a close variant of the recently reported p42-2 element, which was recovered from E. coli of veterinary source. Recovery of pE80 constitutes evidence that evolution or genetic re-arrangement of IncFII type plasmids residing in animal-borne organisms is an active event, which involves acquisition and integration of foreign resistance elements into the plasmid backbone. Dissemination of these plasmids may further compromise the effectiveness of current antimicrobial strategies.Department of Applied Biology and Chemical Technolog

    Tracking the Damping Contribution of a Power System Component Under Ambient Conditions

    No full text

    A Novel Wide-Area Control Strategy for Damping of Critical Frequency Oscillations via Modulation of Active Power Injections

    No full text

    Effects of Anthropogenic Disturbances and Climate Change on Riverine Dissolved Inorganic Nitrogen Transport

    No full text
    Abstract Nitrogen (N) transport from land to rivers, estuaries, and coastal marine systems has been markedly altered by anthropogenic and climatic drivers over recent decades. In this study, a riverine N transport scheme considering anthropogenic N discharge and water regulation was incorporated into the Land Surface Model of the Chinese Academy of Sciences (CAS‐LSM). Seven groups of simulations using the developed model at the global scale for the period of 1981–2010 were conducted to investigate the effects of anthropogenic disturbances and climate change on riverine dissolved inorganic nitrogen (DIN) transport. It was shown that fertilization and point source pollution have enhanced the DIN fluxes in rivers across the world, especially in western Europe and eastern China. The DIN exports were significantly reduced due to retention by reservoirs and the withdrawal of surface water and groundwater, with a retention efficiency of 50–70%. Climate variability and trends increased or decreased the riverine DIN fluxes depending on the specific hydroclimatic conditions. We further analyzed the contributions of climatic and anthropogenic changes to the riverine DIN changes in four major rivers. The riverine DIN exports in the Mississippi River Basin were affected primarily by fertilization, while the changes in DIN exports of the Danube were dominated by point source pollution and water regulation. The Yangtze River in China was seriously affected by both fertilization and point source pollution, and water regulation played a significant role in reducing DIN exports. Climate variability was the primary factor explaining the interannual variability of DIN exports

    Analysis of Chemical Constituents in Wuzi-Yanzong-Wan by UPLC-ESI-LTQ-Orbitrap-MS

    No full text
    Wuzi-Yanzong-Wan (WZYZW), a classical traditional Chinese medicine (TCM) prescription containing Fructus Lych, Semen Cuscutae (fried), Fructus Rubi, Fructus Schisandrae chinensis (steamed) and Semen Plantaginis (fried with salt), is widely used to treat impotence, sterility, spermatorrhea, premature ejaculation, lumbago and post-micturation dribble. However, the chemical profile of WZYZW has not been established yet. In this work, a rapid and sensitive method for systematically screening and identifying the chemical constituents of WZYZW in both positive and negative ion modes using Ultra-Performance LC coupled with ESI-linear ion trap-Orbitrap tandem mass spectrometry (UPLC-ESI-LTQ-Orbitrap-MS) has been developed. Based on the chromatographic and spectrometric data, and referring to the literature, we could tentatively identify 106 compounds, including organic acids, flavonoids, phenylpropanoids, alkaloids and terpenoids. Fourteen ingredients from Fructus Lych were identified, while 10 ingredients were from Semen Cuscutae (fried), 33 ingredients were from Fructus Rubi, 37 ingredients were from Fructus Schisandrae chinensis (steamed), and 20 ingredients were from Semen Plantaginis (fried with salt). The results may provide essential data for further quality control, pharmacological research and clinical evaluation of WZYZW. Furthermore, this study indicates the developed approach based on UPLC-ESI-LTQ-Orbitrap-MS is suitable for characterizing the chemical profiles of TCM prescriptions. This is the first report to provide a comprehensive analysis of the chemical constituents of WZYZW

    Complete Sequence of a F33:A-:B- Conjugative Plasmid Carrying the oqxAB, fosA3 and blaCTX-M-55 Elements from a Foodborne Escherichia coli Strain

    No full text
    This study reports the complete sequence of pE80, a conjugative IncFII plasmid recovered from an E. coli strain isolated from chicken meat. This plasmid harbors multiple resistance determinants including oqxAB, fosA3, blaCTX-M-55 and blaTEM-1, and is a close variant of the recently reported p42-2 element, which was recovered from E. coli of veterinary source. Recovery of pE80 constitutes evidence that evolution or genetic re-arrangement of IncFII type plasmids residing in animal-borne organisms is an active event, which involves acquisition and integration of foreign resistance elements into the plasmid backbone. Dissemination of these plasmids may further compromise the effectiveness of current antimicrobial strategies
    corecore